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Abstract. Researchers have developed methods to account for imperfect detection of
species with either occupancy (presence–absence) or count data using replicated sampling. We
show how these approaches can be combined to simultaneously estimate occurrence,
abundance, and detection probability by specifying a zero-inflated distribution for abundance.
This approach may be particularly appropriate when patterns of occurrence and abundance
arise from distinct processes operating at differing spatial or temporal scales. We apply the
model to two data sets: (1) previously published data for a species of duck, Anas
platyrhynchos, and (2) data for a stream fish species, Etheostoma scotti. We show that in
these cases, an incomplete-detection zero-inflated modeling approach yields a superior fit to
the data than other models. We propose that zero-inflated abundance models accounting for
incomplete detection be considered when replicate count data are available.

Key words: abundance estimation; Cherokee darter; detectability; Etheostoma scotti; negative
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INTRODUCTION

Species abundance and site occupancy (occurrence) of

species are both useful measures of population status,

and therefore of considerable interest to ecologists. Both

measures may be confounded when species detection is

less than perfect (Bayley and Peterson 2001, MacKenzie

et al. 2002, Gu and Swihart 2004). Models have been

developed to address this problem in occupancy

estimation, based on observed presences and absences

of species from replicated samples (MacKenzie et al.

2002, Royle and Nichols 2003), and in abundance

estimation, using replicated count samples (Royle 2004,

Royle et al. 2005). In the latter model, occupancy is a

derived parameter based on locations where abundance

is greater than zero.

However, there are cases in which the occupancy

pattern and the local abundance distribution of a species

arise from two distinct processes, which may be

operating at different temporal or spatial scales.

Consider a species that has been extirpated from a

portion of its range by historic land use activities, with

re-colonization limited by movement barriers. The

relationship between historic land use and species

occurrence may be well represented by an occupancy

model. Where the species does occur, however, its

abundance may be predictable by other covariates. In

such cases, it is reasonable to consider models in which

species abundance is modeled as the product of two

processes: (1) species presence and (2) species abundance

when present. Such an approach may also be useful

when abundances exhibit a threshold effect, such that a

species is either not present, or present at moderate to

high abundances. In both cases, the abundance may be

best represented by a bimodal, zero-inflated distribution

(Welsh et al. 1996).

Zero-inflated distributions have been proposed as

appropriate models for describing the spatial distribu-

tion of rare species because of their ability to account for

extra absences in the data (Welsh et al. 1996, Ridout et

al. 1998, Cunningham and Lindenmayer 2005, Martin et

al. 2005). A zero-inflated distribution can be viewed as a

two-part model, in which (1) the probability of species

presence and (2) the abundance, given presence, are

modeled from the same data. Such models have been

used to estimate species abundances (e.g., Cunningham

and Lindenmayer 2005), but usually without addressing

incomplete detection, which can be of particular concern

for rare species. This omission can be rectified by adding

a third part to the model that estimates per-individual

detection probability based on repeated samples at a

site. The incomplete-detection occupancy model of

MacKenzie et al. (2002) also uses a zero-inflation term

to model occupancy, but lacks an abundance term

because it applies to presence–absence data rather than

count data.
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In this paper, we show how the N-mixture models of
Royle (2004) and Royle et al. (2005) can be used to
simultaneously model occurrence (occupancy), abun-
dance, and detection by specifying a zero-inflated
distribution for the abundance. Royle (2004) and Royle
et al. (2005) developed models using Poisson and
negative binomial distributions for abundance, but
noted that the approach can be employed with other
distributions. The specification of a zero-inflated distri-
bution is especially interesting and useful, because the
resulting model is effectively a marriage of Royle et al.’s
N-mixture abundance model and the zero-inflated
binomial occupancy model of MacKenzie et al. (2002);
the first accounts for abundance and incomplete
detection, the second accounts for occupancy and
incomplete detection, while our proposed formulation
simultaneously estimates all three parameters. After
introducing the models, we apply them to two data sets:
one for Mallard Ducks (Anas platyrhynchos) published
in a supplement to Kery et al. (2005), and the other for
the Cherokee darter (Etheostoma scotti), a federally
threatened fish species. We then discuss the general
applicability, advantages and limitations of the ap-
proach.

BACKGROUND: N-MIXTURE MODELS

FOR ABUNDANCE ESTIMATION

Royle (2004) and Royle et al. (2005) introduced a
class of models for data sets where the study organism is
counted at R sites, i ¼ 1, 2, . . ., R, with multiple counts
made at time t¼1, 2, . . ., T at each site, with such counts
denoted yit. These counts are viewed as realizations of a
binomial process with index Ni (abundance) and
detection probability pit, which we denote as

yit ; binomialðNi; pitÞ: ð1Þ

Note that pit is the per-individual detection probability,
which is also referred to as capture efficiency. This
model assumes that the population at any given site is
‘‘closed’’ across sampling counts, i.e., there is no change
in abundance from count to count, which allows
estimation of both abundance and detection probability.
Detection probability can be assumed to be constant or
it can be modeled as a function of covariates. For the
latter, generalized linear modeling can be employed, for
example with the logit link:

logitðpitÞ ¼ a0 þ a1xit ð2Þ

where xit represents a covariate on detection as
measured at site i on visit t (multiple covariates are
possible and will often be necessary). Thus, this portion
of the model is simply logistic regression.
Estimation of abundance is facilitated by assuming

the observed counts are drawn from a statistical
distribution, denoted generally as f (Ni; h). Perhaps the
simplest useful distribution is the Poisson, which has
only one parameter, the mean (k):

Ki ; PoissonðkiÞ: ð3Þ

Covariates can be added to explain variation in k using a

log link:

logðkiÞ ¼ b0 þ b1yi ð4Þ

where yi is the value of a covariate at site i. Note that

unlike covariates on detection, covariates on abundance

(ki) are assumed to be constant across all t visits. Again,

multiple covariates are allowed, although not explicitly

shown in the equation above. Many alternative distri-

butions to the Poisson are possible; Royle (2004) also

considered the negative binomial, which can be param-

eterized as a Poisson with a free variance parameter that

allows for overdispersion. In this formulation, covari-

ates may be placed on the mean of the negative binomial

distribution, and the variance or ‘‘size’’ parameter

provides an estimate of unexplained deviation from the

mean. In the next section, we discuss how zero-inflated

versions of the Poisson and negative binomial distribu-

tions can be used for f (Ni; h).

ZERO-INFLATED DISTRIBUTIONS TO MODEL OCCURRENCE

AND ABUNDANCE

Zero-inflated mixture distributions (Martin et al.

2005) or zero-modified distributions (Ridout et al.

1998), such as the zero-inflated Poisson (ZIP), are

mixtures of two probability distributions, one with a

point mass only at zero. Employing such a zero-inflated

distribution for f (Ni; h) provides a simple method for

simultaneously modeling both presence (or occurrence

or occupancy; the three terms are equivalent in this

context) and abundance. The ZIP distribution has two

parameters, a probability that the species is present (w)
and the mean abundance of the species, if present (k).
The probability mass function (Pr(Y ¼ y)) for a ZIP

distribution is given by

ð1� wÞ þ ðwÞ3 expð�kÞ y ¼ 0 ð5aÞ

ðwÞ3 expð�kÞ3 ky=y! y . 0 ð5bÞ

(Ridout et al. 1998). Alternatively, we can represent the

mixture distribution as follows, using the pseudo-code

notation from the previous section:

Ni ¼ presi 3 Ki ð6aÞ

presi ; BernoulliðwiÞ ð6bÞ

Ki ; PoissonðkiÞ ð6cÞ

where presi is a binary value indicating whether or not

the species is present at site i, and Ki is the realized

abundance at site i, given presence.

We will usually wish to model w as a function of

covariates, which we can do with a logit link:
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logitðwiÞ ¼ c0 þ c1zi ð7Þ

where zi is the value of a covariate at site i. As was the

case for abundance, covariates on presence (wi) are

assumed to be constant across all t site visits, and

multiple covariates are possible. The covariates used for

presence may be the same or different from the ones

used on abundance. For example, we might wish to

model the abundance of a species as a function of

elevation and current land use, and presence of the

species as a function of elevation and historic land use.

We can write the entire general model as follows:

yit ; binomialðNi; pitÞ ð8aÞ

Ni ¼ presi 3 Ki ð8bÞ

presi ; BernoulliðwiÞ ð8cÞ

Ki ; PoissonðkiÞ ð8dÞ

logitðpitÞ ¼ a0 þ a1xit ð8eÞ

logðkiÞ ¼ b0 þ b1yi ð8fÞ

logitðwiÞ ¼ c0 þ c1zi: ð8gÞ

It is straightforward to adapt this model to use zero-

inflated distributions other than the Poisson, such as the

zero-inflated negative binomial (ZINB). This is the same

as the above formulation, but Eq. 8d is replaced by

Ki ; negative binomialðki; aÞ ð9Þ

where ki is the mean at site i and a is the ‘‘size

parameter’’ or variance of the distribution. As for the

Poisson distribution, the mean of the negative binomial

distribution may accept covariates. However, whereas

the variance of the Poisson distribution is equal to the

mean, the variance of the negative binomial may be

greater (though never less) than the mean. In practice

this means that if there is significant residual variation

after including the covariates, a ZINB model will tend to

provide a better fit than a ZIP model.

The parameters of this model can be estimated using

various approaches, including maximum likelihood and

Bayesian Markov chain Monte Carlo (MCMC) meth-

ods. The likelihood is of the same form as given for the

N-mixture model in Royle (2004), but a zero-inflated

Poisson distribution is substituted for the Poisson

distribution. In the Supplement, we provide code for

maximum-likelihood using the nlm package in R (R

Development Core Team 2005), based on code by A.

Royle given in Kery et al. (2005), and code for Bayesian

estimation in WinBUGS (Spiegelhalter et al. 2003). The

code in WinBUGS is extensible to complex structures,

such as mixed-effects models, although there may be

complications with the use of negative binomial models

(see Supplement). The coding in nlm is somewhat less

intuitive and not as readily extensible to complex model

structures, but has a great speed advantage. In addition,

we have developed a user-friendly interface to allow

users with only basic knowledge of R to run ZIP and

ZINB models for any dataset, without the need for

coding in nlm (a tutorial is also included in the

Supplement). In tests we found that models converged

well using maximum likelihood and Bayesian approach-

es even with relatively small data sets (30 sites with three

samples per site; S. J. Wenger and M. C. Freeman,

unpublished data).

The model inherits the assumptions of abundance

models (Royle 2004) and basic occupancy models

(MacKenzie et al. 2002). The first of these is that the

sampled population is closed to immigration, emigration

and state changes between samples, so that the same

number of individuals is available for counting each

time. For mobile species this is likely to be violated to

some degree. A violation will tend to reduce estimates of

detection probability and inflate estimates of abundance,

since changes in counts will be interpreted as non-

detections rather than changes in population. A second

assumption is that individuals are independent and

equally available for capture. If this assumption is

greatly violated (as can happen with some schooling

fishes, for example), there can be excessive variation

among counts at a site and detection probability will

again be underestimated. In such circumstances it may

be appropriate to estimate the number of groups rather

than individuals. Finally, there are assumptions associ-

ated with the selected distribution used to model

abundance; the choice of distribution is essentially a

prior assumption about the structure of the unexplained

error in abundance among sites. For example, if a

Poisson distribution is used where there is excessive

unexplained variation (overdispersion), parameter esti-

mates may be biased.

APPLICATION 1: MALLARD DUCK DATA

Our first illustration of the zero-inflated abundance

model uses the data set for Mallard Ducks (Anas

platyrhynchos) reported by Kery et al. (2005). These

data, from the national breeding bird monitoring

program in Switzerland consist of 235 sites, of which

191 were sampled three times, 42 were sampled two

times, and two were sampled only once. Mallard

presence was observed at 40 of the sites with counts

ranging from 1 to 12, with a mean count of 1.3 for sites

where the species was observed. Kery et al. (2005) fitted

Poisson and negative binomial mixture models to the

Mallard data using covariates for elevation, forest cover,

monitoring route length, effort, date, and interactions of

these. They selected best-supported models based on

Akaike’s Information Criterion (AIC; Burnham and
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Anderson 2002). We repeated their analysis using ZIP
and ZINB distributions as assumptions on abundance,
rather than Poisson and negative binomial distributions.
We fitted a selected subset of covariate combinations
likely to result in a good fit based on the results reported
by Kery et al. (2005). We ranked all models by AIC and
compared the best-supported models with the best-
supported models reported by Kery et al. (2005). We
used AIC rather than AIC adjusted for small sample size
(AICc) for consistency with the previously reported
values.

Results of Mallard Duck study

Based on AIC, we found that the best-supported
model was one with a ZINB assumption on abundance
(Table 1). In general, models with a zero-inflated
abundance distribution ranked above their non-zero-
inflated counterparts, and models using negative bino-
mial distributions ranked above those using Poisson
distributions. The best-supported zero-inflated models
included the same covariates as the best-supported non-
zero-inflated models, but a better fit was obtained by
placing some covariates on occurrence rather than
abundance, or on both occurrence and abundance
(Table 1). For example, Mallard presence/absence was
better explained by forest cover, while Mallard abun-
dance was better explained by elevation. Both occur-
rence and abundance were correlated with route length,
indicating that increasing the length of the route driven
by observers increased both the probability of encoun-
tering habitat for Mallards and the abundance of
Mallards, when encountered. Mean detection probabil-
ities were essentially the same (about 50% per individual,
under mean covariate values) for the best ZINB and the
best negative binomial model.

APPLICATION 2: CHEROKEE DARTER DATA

For the second illustration we used count data for the
Cherokee darter (Etheostoma scotti), a federally protect-
ed stream fish endemic to the Etowah River Basin in
Georgia, USA. Accurate prediction of species abun-

dances across environmental gradients can inform

conservation strategies, which was our interest in

building predictive models for the Cherokee darter.

Gaps in the Cherokee darter’s distribution within the

Etowah Basin suggested that the species had been

extirpated from portions of its native range (Bauer et

al. 1995, Burkhead et al. 1997), effectively creating two

sources of non-occurrence: extirpation and unsuitable

local conditions. We hypothesized that a zero-inflated

abundance model would therefore provide a better fit to

count data for this species than models without zero-

inflation.

Data were collected during 276 monitoring events at

215 sites in small and medium-sized streams between

1999 and 2003 using backpack electrofishing and kick

seining. During each collection, captured Cherokee

darters were counted and returned to the stream. A

subset of sites was sampled more than once; those

collections made at the same site within two consecutive

years were included in the analysis under the assumption

that the population was closed during that period (this is

a long period to assume closure, which means that

detection might be somewhat underestimated, as dis-

cussed previously). The subset comprised 54 sites

sampled a second time and seven sites sampled a third

time. Methods and effort at each site were intended to be

consistent, although we hypothesized that there was

variation in the effectiveness of collectors associated

with the three major institutions performing the

collections. Collector institution was therefore consid-

ered a covariate on detection. Cherokee darter counts

ranged from 0 to 145, with a mean of 10 and standard

deviation of 19; Cherokee darters were collected at 115

of the 215 sites.

Six potential site-level covariates of abundance and

occurrence, including a variable of management concern

(effective impervious area, EIA) were recorded from

mapped data using a Geographic Information System

(GIS). The covariates were identified through explor-

atory analyses of 24 potential variables in relation to

TABLE 1. Results of the Mallard data study.

Distribution

Covariates

AICAbundance Occurrence Detection

ZINB route length, elevation route length, forest cover date, date2, date 3 elevation,
date2 3 elevation

455.0

NB route length, elevation, forest cover NA date, date2, date 3 elevation,
date2 3 elevation

472.7

ZIP route length, elevation route length, forest cover effort, date, date2, date 3 elevation,
date2 3 elevation

474.2

Poisson route length, elevation, forest cover NA effort, date, date2, date 3 elevation,
date2 3 elevation

506.8

Notes: The best supported covariate combination for each distribution is shown along with the corresponding AIC score.
Distributions are zero-inflated negative binomial (ZINB), negative binomial (NB), zero-inflated Poisson (ZIP), and Poisson.
Included covariates are listed according to the term to which they are applied (abundance, occurrence, or detection). Covariates and
AIC scores for NB and Poisson models are from Kery et al. (2005). NA indicates ‘‘not applicable,’’ as these models do not have a
separate term for occurrence and therefore cannot have covariates for occurrence/presence.
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darter abundance and occurrence, using linear and
logistic regression, respectively. The five variables
exhibiting strongest association with fish abundance or
occurrence, in addition to EIA, were: elevation, bedrock
geology, surficial (Quaternary) geology, sub-basin res-
ervoir area (area inundated by reservoirs in the tributary
system to which the site belongs), and occurrence in the
Little River tributary system (where the Cherokee darter
appears to be widely extirpated [Burkhead et al. 1997]).
EIA was measured as the proportion of the area within 1
km of the collection site that was impervious and
drained by storm sewers. These six variables were not
strongly intercorrelated (i.e., r , 0.4).

Five sets of model covariates were formulated to
represent alternative hypothesized effects of site vari-
ables on fish abundance, occurrence, or both (Table 2).
Based on the results of the exploratory analysis, our
strategy was to include two variables (Quaternary
geology and EIA) in all models as covariates on
abundance and two variables (elevation and bedrock
geology) in all models as covariates on occurrence, and
to test alternative combinations of the remaining
variables as covariates on occurrence and/or abundance.
Each of five sets of covariates (Table 2, covariate sets
A–E) was modeled using ZIP and ZINB assumptions on
abundance. Variations of these covariate sets were also
fit using Poisson and negative binomial models without
zero-inflation terms, in which cases all covariates were
placed on the abundance term (Table 2, covariate sets
F–H). A total of 16 models were evaluated. Akaike’s
Information Criterion for small sample size (AICc) was
calculated for each model, with the sample size set equal
to the number of sites. DAICc was calculated by
subtracting the lowest (best) AICc score from every
AICc score.

Results of Cherokee darter study

Based on AICc, the best-supported model was the
zero-inflated negative binomial abundance model with
covariate set B (Table 3). With this covariate set,

occurrence was explained by elevation, bedrock geology,

and whether or not the collection was made within the

Little River system; abundance was explained by

surficial geology and EIA. There was a clear separation

of models based on the assumed abundance distribution

(Table 3). All the negative binomial models provided a

much better fit than the Poisson models, while the zero-

inflated models performed better than models with the

same distribution but no zero-inflation term. Collector

identity had a strong influence on detection in all

models; mean per-individual detection probability var-

ied from as low as 9% to as high as 22%, depending on

the collector.

DISCUSSION

Our results for the two data sets show that zero-

inflated abundance models can be useful in estimating

species occurrence and abundance from replicate count

data while accounting for incomplete detection. In both

TABLE 2. Covariates on abundance and occurrence for Cherokee darter models.

Covariate
set

Covariates

Abundance Occurrence

A surficial geology, EIA elevation, bedrock geology, impoundments
B surficial geology, EIA elevation, bedrock geology, Little River system
C surficial geology, EIA elevation, bedrock geology, impoundments,

Little River system
D surficial geology, EIA, elevation, bedrock geology elevation, bedrock geology, impoundments
E surficial geology, EIA, elevation, bedrock geology elevation, bedrock geology, impoundments,

Little River system
F surficial geology, EIA, elevation, bedrock geology,

impoundments
NA

G surficial geology, EIA, elevation, bedrock geology,
Little River system

NA

H surficial geology, EIA, elevation, bedrock geology,
impoundments, Little River system

NA

Note: ‘‘EIA’’ indicates effective impervious area.

TABLE 3. Results of the Cherokee darter study.

Distribution
Covariate

set DAICc

ZINB B 0
ZINB D 2
ZINB C 2
ZINB E 5
ZINB A 15
NB G 59
NB H 61
NB F 75
ZIP E 1766
ZIP D 1812
ZIP B 1824
ZIP C 1825
ZIP A 1841
Poisson H 3750
Poisson G 3766
Poisson F 4115

Note: Values for DAICc are shown for alternative covariate
combinations applied to each distribution (see Table 2 for
covariates in each set).
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cases, models with a zero-inflation term provided a

better fit to the data than N-mixture abundance models

without a zero-inflation term. Based on these results and

on results from studies of simulated data (S. J. Wenger

and M. C. freeman, unpublished data), we believe zero-

inflated abundance models will prove useful for many

types of data sets.

In the past, zero-inflated models have been recom-

mended as appropriate for rare species (Welsh et al.

1996, Cunningham and Lindenmayer 2005), although

studies have shown that a negative binomial model can

also provide a good fit to apparently zero-inflated data

sets (Warton 2005). We believe that rarity alone is not

sufficient grounds for selecting a zero-inflated model,

and we agree with Warton (2005) that negative binomial

and other distributions without zero-inflation terms

should also be considered as alternatives. Using class

covariates (e.g., soil types for a rare plant) to model

abundances may adequately account for absences,

without the need for a zero-inflation term. It is

important to remember that the choice of the distribu-

tion f (Ni; h) is a specification of the error distribution,

not the distribution of the observed counts, so zero-

inflation in counts is not necessarily evidence of the need

for a zero-inflated modeling distribution.

A zero-inflated distribution is likely to be better

supported than a non-inflated distribution under at least

two circumstances. First, if a continuous covariate is a

useful predictor of occurrence but not of abundance,

then applying that covariate to the occurrence term of a

zero-inflated abundance model will likely yield a better

fit than applying that covariate to the abundance term in

a model that doesn’t account for zero inflation.

However, if the covariate can be converted to a class

variable, it may be a useful covariate for the latter model

type. Second, if abundance shows a threshold relation-

ship to a continuous covariate, a better fit should be

obtained by adding that covariate to both the occur-

rence and abundance terms, rather than just abundance.

The zero-inflation term can thus account for non-linear

relationships. Modeling techniques such as neural

networks (e.g., Olden and Jackson 2002) and maximum

entropy (see review of this and other methods by Elith et

al. [2006]), are even better suited to handling non-

linearities, but as yet these approaches have not been

extended to account for incomplete detection of species.

An additional benefit to using zero-inflated distribu-

tions is that the separate occurrence and abundance

terms can have heuristic value in representing the

different mechanisms that gave rise to observed patterns

of species abundance. These may be used to represent

factors operating on different temporal or spatial scales.

This was previously explored by Cunningham and

Lindenmeyer (2005) in a paper examining the use of

zero-inflated distributions for modeling rare species.

However, the approach used in that study did not

account for incomplete detection, which can be a major

concern with rare species, so we see the approach

presented here as a significant advance.

As a general guideline, when presented with a set of

count data collected by repeat visits to sites, we
recommend formulating a candidate set of models that

includes both zero-inflated and non-zero-inflated incom-

plete detection models. The models should include

covariates reflecting a priori hypotheses to the extent
possible, following a general information theoretic

framework (Burnham and Anderson 2002). The best-

supported models can be selected based on AIC, cross

validation, or other methods.

Our formulation of the zero-inflated distribution was

as a simple mixture based on a full Poisson or negative
binomial distribution. Other authors (Welsh et al. 1996,

Cunningham and Lindenmayer 2005, Warton 2005)

have suggested using a truncated Poisson or truncated

negative binomial distribution rather than the full
distribution. This produces a two-part, conditional

model in which occurrence and abundance are truly

separate and orthogonal, and eliminates the possibility

that a species may be predicted as present (occupancy¼
1) but with a mean abundance of zero. On the other
hand, if mean abundance is moderate or high, the two

approaches are functionally equivalent (Welsh et al.

1996). We found the simple mixture easy to construct in

the software programs we used (WinBUGS and R), and
note that conceptually it is not illogical to envision a

species as potentially present based on the covariates

that govern its distribution (occurrence), but absent at a

patch because the covariates that govern its abundance

are unfavorable. Therefore, we see both formulations as
valid alternatives.

In their review of the use of zero-inflated distributions

in ecology, Martin et al. (2005) noted that ‘‘in the

literature there has been no formal discussion of how to

model data sets that contain both excess true zeros and

excess false zeros’’ (false zeros being cases of non-
detection). While the occupancy models of MacKenzie

et al. (2002) actually do this for presence–absence data

using a zero-inflated binomial model, it is true that until

now there has not been an approach that accounts for
excess zeros and non-detection for count data. The

method outlined here—a specific case of the general

model of Royle (2004)—fills this gap. We suggest that

these models are worthy of consideration under almost

any circumstances where repeat count data are avail-
able.
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SUPPLEMENT

Codes, notes, and tutorial for running zero-inflated abundance incomplete detection models in WinBUGS and R (Ecological
Archives E089-166-S1).
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